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 EXPLORATORY MODELING FOR POLICY ANALYSIS

 STEVE BANKES
 RAND, Santa Monica, California

 (Received February 1992; revision received January 1993; accepted March 1993)

 Exploratory modeling is using computational experiments to assist in reasoning about systems where there is significant

 uncertainty. While frequently confused with the use of models to consolidate knowledge into a package that is used to

 predict system behavior, exploratory modeling is a very different kind of use, requiring a different methodology for

 model development. This paper distinguishes these two broad classes of model use, describes some of the approaches

 used in exploratory modeling, and suggests some technological innovations needed to facilitate it.

 W e are arguably in a golden age of computer

 NY (,modeling for policy analysis. Computational
 power is plentiful. A plethora of models are in use or

 under development, from small spreadsheet models

 developed for individual use to large multipurpose

 supercomputer-based simulations. Computer model-
 ing has become central to nearly every kind of policy

 concern, from military procurement, to economic
 forecasting, to studies of global climate change.

 If computer modeling were fulfilling its promise,

 this would also be a golden age for policy analysis,
 with the computational power of computer models

 supporting significantly better decision making than
 was possible thirty years ago. However, the principal

 result of the increasing use of computer models seems

 to be not a marked improvement in the quality of

 decision making, but rather a growing sensitivity to
 the shortcomings of models. There is an extensive and

 often insightful literature discussing and documenting
 the pitfalls in the uses of models and suggesting ways
 to avoid them (Quade 1980, 1985, Meadows,
 Richardson and Bruckmann 1982, Raiffa 1982,

 Goeller 1984, Meadows and Robinson 1985, Miser
 and Quade 1988). Nevertheless, confusion over the
 appropriate uses for models persists, and criticisms of
 policy studies based on large simulations are becoming
 increasingly common (Stockfisch 1975, Freedman
 1981, Schrage 1989, Hodges 1991).

 This paper argues that many of the problems of

 computer modeling generally, and of the use of large

 simulations most particularly, result from a funda-

 mental confusion between two very different uses for

 computer models. I call these two uses consolidative

 and exploratory modeling.

 Building a model by consolidating known facts into

 a single package and then using it as a surrogate for

 the actual system, which I call consolidative modeling,
 is in many ways the standard approach to model

 development and use. Where successful, it is a pow-

 erful technique for understanding the behavior of

 complex systems. Unfortunately, the consolidative

 approach is not always possible.

 When insufficient knowledge or unresolvable

 uncertainties preclude building a surrogate for the
 target system, modelers must make guesses at details

 and mechanisms. While the resulting model cannot

 be taken as a reliable image of the target system, it

 does provide a computational experiment that reveals
 how the world would behave if the various guesses

 were correct. Exploratory modeling is the use of series

 of such computational experiments to explore the
 implications of varying assumptions and hypotheses.

 Enormous increases in the availability of computa-

 tional power in the past few years have made aggres-
 sive exploratory use of complex computer models

 possible for the first time. We now live in an era in
 which computational experiments are commonplace

 in many of the sciences (Strauss 1974, Campbell et al.

 1985, Rose and Dobson 1985, Anderson 1988,

 Lipton, Marr and Welsh 1989). Exploratory use
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 involves guessing the details of systems for which there

 are no data, such as the behavior of subatomic parti-
 cles at very high energies or the spatiotemporal acti-
 vation patterns of large numbers of neurons in the
 brain. The implications of these guesses can be com-

 puted, allowing the computer-assisted researcher to
 look for interesting guesses. As computing becomes
 easier than performing experiments, this style of
 research becomes increasingly attractive. The difticul-
 ties of modeling once dictated gathering as much data
 as possible before modeling, but now it may often
 prove more expedient to do extensive modeling to
 constrain the number of actual experiments that need
 to be done to answer a question.

 Exploratory approaches to modeling are especially
 favored whenever critical information is absolutely
 unavailable. As policy studies must contend with sig-
 nificant unresolvable uncertainties, modeling for pol-
 icy analysis often must have an exploratory rationale.
 Unfortunately, the exploratory nature of most model-

 based policy research is often unrecognized, and the
 commonplace adoption of methodology drawn from
 the consolidative use of models frequently results in

 questionable strategies for model development and
 use.

 In this paper, I will describe the consolidative and
 exploratory modeling paradigms and argue that they
 are distinctly different though frequently confused. I
 will further argue that the confusion between these

 uses for models is the cause of many, perhaps most,
 of the problems surrounding computer modeling for
 policy analysis. I will then describe in greater detail
 how exploratory modeling can be used to support

 policy studies. Finally, I will suggest that this
 approach, together with the growing abundance of
 computational power, implies significant opportuni-
 ties for improving the methodology and the technol-
 ogy of computer modeling.

 THE PROBLEM: PRETENDING TO DO WHAT
 CAN'T BE DONE

 Consider the following fictional account.

 In 1 99x, the Joint Chiefs of Staff decide they need to
 develop improved means for making (and defending)
 procurement decisions, designing force structures, and
 training officers. (This story would not change much
 if the problem were to avoid global warming or navi-

 gating the world out of an economic recession.) To
 analyze the differential impact of alternative decisions
 on potential combat outcomes, they decide to build
 the ultimate combat simulation. The wisest experts in

 military science are drawn together to define the
 model. A crack team of programmers is assembled to

 implement it on the most advanced computers, using

 state-of-the-art software tools. All relevant data bases

 are made available for the effort. In all cases, the best

 regarded modeling techniques are used, and military
 experts are consulted to ensure the realism of each

 submodel. For the ultimate model to be valid for a

 wide range of contingencies, all phenomena that might

 potentially be influential on battle outcomes are

 included, and all details that might prove pivotal are
 represented. This results in a very detailed model
 (because of a nail, the shoe was lost, because of the

 shoe the horse, etc.). The model is seen as realistic

 because it includes many factors, and, because it rep-
 resents warfare at a very high level of resolution, lots

 of hard engineering data can be used, enhancing the

 model's credibility.

 The resulting computer program is, of course, quite

 large, involving several million lines of code. And,
 because new studies often suggest needed modifica-
 tions, the length continues to grow even after the
 model becomes operational. For the model to execute

 within a reasonable time it must run on the newest,
 massively parallel supercomputers. Even on these

 machines computational complexity limits the num-
 ber of cases that can be run.

 An additional constraint on the number of cases

 possible for any given analysis is the time required to
 set up the hundreds of thousands of inputs that specify
 the initial situation and model boundary conditions

 (the scenario). The outputs of the model are so volu-

 minous that figuring out what happened is not trivial
 either. These problems are met by yet more computer
 programs that automate the process of setting up
 initial conditions and summarizing the outputs, effec-
 tively requiring the use of models to make sense of
 the ultimate model. The computer software requires
 highly trained operators, and they are unfortunately
 in short supply. It is still diffi1cult to understand why
 certain simulated results occur, but warfare is a com-
 plex business, and no one really expected simulation

 to completely eliminate that complexity. In spite of

 these problems, the state-of-the-art graphics make for
 great demonstrations and study outputs are compel-

 ling to their sponsors. All the software managers and
 military action officers get promoted.

 After some time, however, the ultimate model
 begins to develop enemies. Outputs often tend to show
 little impact for some types of forces or weapon sys-
 tems, even though proponents may consider them
 crucial. Upon examination, certain aspects of model
 output can be demonstrated to be unrealistic. This is
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 ascribed to details that failed to make it into the model.
 Modifications to the model are made, but this fails to
 satisfy those who are unhappy with the model's out-
 comes. Some assumptions about the nature of warfare
 that were made in designing the model are contested
 by detractors. Validation exercises designed to adju-
 dicate these issues become politicized.

 Although there are far too many inputs to do a
 thorough sensitivity analysis, occasionally someone

 discovers a case where a minor change creates a big
 swing in outcome. This is pointed out to be not
 unrealistic, but it is distressing to those who are ratio-
 nalizing multibillion dollar expenditures by compar-
 ing simulations runs.

 In response to all these problems the model is

 frequently revised. Unfortunately, its size makes revi-
 sion nontrivial, and making sure revisions have not
 created obscure bugs is very time consuming (unfor-
 tunately, some of the original programmers have
 moved on to new jobs).

 Eventually the entire enterprise collapses under its
 own weight, and use of the ultimate model is aban-

 doned. Work immediately begins on its successor.

 This story is admittedly dramatized and oriented to
 a worst case. Nonetheless, there exist failed simulation
 modeling efforts whose stories are quite similar, and
 most large simulations for policy analysis have
 encountered at least some of the problems mentioned
 here. Analysts that are wiser than the protagonists of

 this story certainly exist. However, the effort to build

 the ultimate combat simulation model is completely
 consistent with much existing conventional wisdom,
 evidenced both by the way we build models and the
 way we talk about them.

 Computer modeling efforts in policy areas are prone
 to a variety of problems:

 * Computer models often tend to be large and to
 continue growing throughout their history.
 * It is often difficult to verify that a computer program
 correctly implements the advertised conceptual
 model. The sheer size and complexity of the models
 often make it essentially impossible to guarantee that
 they have been completely debugged and to ascertain

 whether there are conceptual errors in the model the
 program implements. These problems apply equally
 to the computer program and to its outputs, and affect
 all phases of a model's history-its construction, use,
 maintenance, and modification for new purposes.
 * Because of this opacity, experts not associated with
 a model must rely on a priesthood of model cogno-
 scenti. One must trust the priesthood to have done a

 good job and to be portraying the details of the model's
 internal structure correctly.

 * Consequently, computer models are seldom sub-
 jected to peer review. Studies based upon large models
 are never truly replicated by second groups, as such
 replication would require the reimplementation of the

 identical conceptual model by other programmers.

 * It is extremely difficult to adequately determine how
 sensitive model outputs are to uncertainties in the
 inputs.

 * There is a corresponding tendency to underestimate

 (or ignore) the uncertainties (or inaccuracies) of inputs
 to models. This includes both explicit inputs and
 assumptions made in the process of building the
 model.

 * There is a strong tendency to model in detail phe-
 nomena for which good models can be constructed,
 and to ignore phenomena that are difficult to model,
 producing a systematic bias in the results.

 * These technical difficulties can interact with psy-
 chological or bureaucratic tendencies to produce a
 host of problems, including using models to rational-
 ize institutional prejudices, poor models driving out

 careful thinking, and tending to emphasize the aspects
 of a problem that can best be simulated. The result

 can often be that models provide an illusion of analytic
 certainty for problems that are not well understood,
 or in the worst cases provide scientific costume for
 points of view that are self-serving.

 While these problems have varying technical attri-
 butes, and particular problems may be managed
 through technological improvements, these myriad
 components are but symptoms of a single fundamen-
 tal problem that lies in our assumptions about what
 models are and how they are used.

 Why Models Go Wrong

 While there is a general consensus in many policy

 areas that computer modeling is a difficult and
 troubled business, there is significant contention
 regarding the reasons for this difficulty. At one
 extreme, computer technologists will point to inade-

 quacies of existing software tools, and suggest that
 more advanced technologies such as object-oriented
 simulation languages or expert systems could provide
 a fix. At the other extreme, critics of the use of models
 point to the difficulty of validating models in the social
 sciences and the propensity for models to obfuscate as
 much as they illumine. Examples of models being

 used to serve the interests of political and bureaucratic
 forces suggest that the problem lies in the lack of
 objectivity and scientific rigor on the part of modelers.
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 Yet another version of model skepticism holds that

 only small models are virtuous. All these points of

 view have their merit, but fail to capture the crux of

 the problem.

 Technological fixes alone will not solve these prob-

 lems. Computer science has provided numerous tools

 to facilitate the construction, maintenance, modifica-
 tion, and verification of large programs. These and

 future innovations may improve our ability to effec-

 tively produce computer programs implementing

 models, but they can only ameliorate, not solve, the

 problems enumerated above. For example, while a
 given model may be more tersely and understandably

 expressed in an appropriate language, there is a size
 threshold beyond which a program becomes difficult

 to understand regardless of the language used. Con-

 sequently, high-level languages and other techniques
 will not solve the general problem unless the reasons

 the models often become so large are addressed. Fur-
 thermore, no technological fix will eliminate the prob-
 lems the developers of the ultimate combat model had
 with validation and sensitivity analyses.

 Conversely, opposition to using computer models
 avoids the problems of model misuse by depriving

 analysts of a potentially very powerful tool. Similarly,
 there are problems whose inherent complexity cannot

 be wished away, and the dictum that only small or

 simple problems, or those admitting simple concep-
 tual models, can be addressed by computer modeling

 means that computers may not be used to study just

 the phenomena for which their potential utility seems
 highest. This is counterintuitive to say the least.

 By far the most telling evidence against all these

 explanations is the striking counterexample that there
 are very large models implemented with relatively
 primitive tools (e.g., FORTRAN) that have been enor-
 mously successful. Examples include the wide variety
 of mechanical and electrical engineering models that
 are used for computer-aided design systems. Such

 models consolidate existing theory and data into a
 package that can be experimentally validated to pre-
 dict the behavior of interest in the systems they model.
 Once validated they can be used as surrogates for the

 actual system, in that the consequences of a proposed
 action can be evaluated by simply trying the action in

 the model.
 Modeling efforts that become troubled typically

 involve models that cannot be validated experimen-

 tally. Validation may not be possible because the

 necessary experiments cannot be carried out, histori-

 cal data are inadequate, theory is insufficiently mature
 to suggest models capable of making predictions,
 because cases of interest require initial conditions or

 boundary conditions that can only be guessed at, or

 because nonlinearities in the model cause even modest

 uncertainties in the inputs to produce substantial

 uncertainties in the results. Succinctly put, predictions

 of outcomes is only possible when we possess knowl-

 edge sufficient to make such a prediction. Various

 sorts of missing knowledge or inherent uncertainty

 can make the strategy of building a model that con-

 solidates all we know and then using it as a surrogate
 for the target system unproductive. In particular, it is

 not possible to stage World War III several times to

 resolve questions of interest to combat modelers, nor

 to guess what the initiating circumstance might be.

 Any model of the real world will certainly be only

 approximately correct, and no model can predict the

 behavior of a system to arbitrary precision. It is not

 some threshold limit on the accuracy, certainty, or
 precision in predicted outcomes that makes the critical

 difference between the applications that can be con-

 solidatively modeled and those that cannot. Instead,
 the intended use for the model implies constraints on

 the accuracy required for it to be used as a surrogate
 for the actual system. Where the predictions of a best-
 estimate model can answer the question of interest, a
 consolidative approach to model development and

 use is preferred. Where the question to be addressed

 cannot be answered reliably by such a best-estimate
 model, the consolidative strategy for model develop-

 ment and use cannot be employed validly. The critical

 question that must be addressed is not simply the

 relative validity of models, but rather the appropriate
 strategy for using a model given its limitations.

 Trying to Predict the Unpredictable

 Consolidative modeling is the name I use for what
 many would consider the nor'mal use of models. When
 adequate knowledge about both system characteristics

 and initial conditions exists, a model embodying this
 knowledge can predict system behavior reliably

 enough to be used for reasoning about the likely
 consequences of contemplated decisions. Such a com-
 puter model consolidates a large amount of informa-

 tion into a particularly useful form. A successful
 consolidative model can be used as a surrogate for the
 system itself, and once the model exists and is vali-

 dated, much of the information used in its construc-
 tion may be dispensed with.

 Analytic strategies based on consolidative modeling

 typically have a two-phase structure: phase one con-
 structs and validates the model, and phase two utilizes
 it by running particular cases. Such a model is a very
 powerful artifact, and much of the enthusiasm for
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 modeling projects is based on the hope that a (predic-

 tive) consolidative model can be achieved.

 Consolidative modeling is the design of models

 driven by what is known. Many of the great moments

 in the history of science, Newton's laws of motion,
 Maxwell's theory of electromagnetism, or Darwin's
 theory of natural selection, to name a few, are exam-

 ples of the consolidation of previously determined

 facts into a single unifying model. Consequently,

 much of our scientific cultural heritage presupposes a

 consolidative research strategy. This paradigm for
 modeling a target system is such a deep part of our

 culture that many may regard it as obvious.

 Its usefulness, however, depends on means being

 available to validate the resulting model. For predic-

 tive purposes, validation normally requires confirma-

 tion by experiment. The variety of means short of

 experimental validation that may be employed to
 improve model quality, including experimental vali-

 dation of submodels where possible, determining
 model parameters from validated sources, ensuring

 the plausibility of outcomes (so-called face validity),

 or adding more realistic details to the model, cannot
 solve the fundamental problem facing the designers of
 the ultimate combat model. Where there are uncer-

 tainties that make strong validation impossible, the

 consolidative modeling paradigm will not lead to
 reliable results.

 The fundamental error committed by the designers

 of the ultimate combat simulation was the use of the

 consolidative approach to modeling where it was inap-

 propriate. For the questions they wished to answer,

 no best-estimate model could predict outcomes relia-

 bly enough to be used as a surrogate for the real world.
 Once they committed themselves to an untenable
 research strategy, success was impossible no matter

 how well the inappropriate model was crafted.

 It is instructive to consider how the myriad prob-
 lems that afflicted our fictional designers were gener-

 ated by such a fundamental mistake. A central
 problem was the all-too-prevalent tendency to empha-

 size building a model over carefully thinking through
 an analysis. Emphasis on building a model makes
 sense if the model produced accurate predictions.
 Once such a tool was in hand, a wide variety of uses
 could then be entertained. However, in a context

 where reliable prediction is not possible, a model is of

 little use without an analytic framework that makes

 its outputs relevant. In such a context, a methodology

 that first develops a general purpose model and then
 considers possible applications runs a deep risk of
 expending large amounts of resources on a model that
 cannot be employed validly for any analysis.

 Similar considerations pertain to difficulties with
 verification and validation. When models can be used

 for prediction, even a single experiment in which the
 model predicts system behavior successfully can pro-
 vide a great deal of validation and verification. The

 issues of verification and validation become much

 more vexing when model outputs cannot be checked

 by experiment, and when the model is not expected
 to predict the details of any actual event.

 Many of the problems encountered with the ulti-
 mate model were a consequence of its large size. The
 tendency for models to grow very large is often a
 symptom of the misapplication of consolidative mod-
 eling methodology. When a model can be used to
 predict, it can be validated through its predictions.
 Among competing predictive models, the most pre-

 ferred is the simplest that makes sufficiently accurate
 predictions. However, when models cannot be vali-
 dated in such a direct fashion, the quality of a model
 must be assessed by other means.

 Often, judgments of model quality are based upon
 the degree of completeness (the inclusion of all factors
 and phenomena that might influence outcomes for at
 least some cases). In contrast with models of predict-
 able target systems that are simplifications of realitv
 models of unpredictable systems often are attempts to

 copy the full complexity of the target system. The
 designers of such models have fallen prey to false
 reductionism: The belief that the more details a model

 contains, the more accurate it will be. This reduction-
 ism is false in that no amount of detail can provide

 validation, only the illusion of realism. By designing

 a model in the absence of an analytic strategy, the
 designers left themselves open to an unending process
 of adding ever more detail. Entertaining the myth that
 they were building a predictive model but without the
 backstop of a thorough validation, the fictional design-
 ers pursued various social definitions of model quality.
 The best military experts, and the best programmers
 could, perhaps, produce a best-estimate model, but
 the uncertainties of warfare made it certain that it
 would nonetheless be wrong. Furthermore, as model
 specifications and evaluation necessarily rested on
 subjective judgments, the eventual politicization of
 what was portrayed as a scientific endeavor was
 inevitable.

 The designers of the ultimate combat model were,
 to some extent, victims of advancing computer tech-
 nology. In earlier eras, limitations in machine speed
 made heroic modeling efforts impossible. As com-

 puters have become faster, our cultural biases toward
 consolidative modeling can now lead the unwary to

 pursue ever greater detail, producing models of
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 unbounded complexity. Advanced computer graphics
 have further motivated the use of very detailed
 models. This detail can be useful for applications
 where consolidative strategies can succeed, or where
 realism is an end in itself, i.e., for entertainment or
 training applications. For analysis, however, often the
 need is to discover useful simplifying assumptions.
 Consolidative strategies resulting in highly detailed
 models often have not served this end.

 To summarize, consolidative models make great
 screwdrivers, but they pound nails rather poorly. For
 problems involving practical barriers to experimental
 validation, significant uncertainties, or strong nonlin-
 earities, a different approach is needed.

 EXPLORATORY MODELING

 If we do not wish to repeat the mistakes of the ultimate
 combat model, and do not wish to abandon computer
 modeling as a tool for understanding complex and
 uncertain problems, what are we to do? To answer
 this question, let us pursue our gedanken history a
 few more steps. Imagine the fictional designers of the
 ultimate combat simulation, called to testify before a
 congressional committee investigating the project.

 Congressman: And so, after spending zillions of tax-
 payer dollars, you produced a system that could not
 predict the details of even one battle.

 Designer: That's true, but it was never intended to. If
 you had asked me before the project began, I would
 have told you that we would be simulating the
 general character of battle, not the individual details.

 Congressman: If it doesn't get the answer right, what
 good is it? How can you justify the construction of
 this white elephant?

 Designer: Models such as this one are useful, not
 because they predict the details of battle, but because
 building and using them improves our insight.

 When challenged, defenders of models that cannot
 predict system behavior will invariably fall back on
 an appeal to the model's utility in improving insight.
 This is, I believe, the correct answer. However, if we
 are to improve modeling for policy analysis, we must
 understand how it is that insight can be produced by
 such means.

 How can we answer the skepticism of the model
 critics, like the fictional congressman above? If uncer-
 tainties are large, then with probability approaching
 unity, any model we construct will be incorrect in at
 least some details. How can valid conclusions be

 arrived at using "wrong" models?
 When a model is not a veridical surrogate for the

 target system, the meaning of its outputs must be

 provided by a larger context. Typically, this context

 must be an analytic strategy that justifies its use. A

 few examples of possible strategies should suffice to
 make the skeptic's question seem less paradoxical.

 One simple example is the use of models as exis-

 tence proofs. Demonstrating a plausible model that
 has unexpected properties can usefully reorient an

 analysis, even when the model is unlikely to be correct
 in detail. This is because the analysis must confront

 the range of possible behaviors of the system, given
 what is known. The unexpected result expands this
 range. It creates new knowledge, whether or not it is

 true in the sense that it copies the actual system
 behavior.

 A related use is hypothesis generation. A model can

 be helpful in suggesting an explanation for a puzzling
 fact, even if it is eventually proven wrong. Where no

 explanation previously exists, a model that suggests a
 plausible explanation can guide the search for other
 examples, or new data, or provide a basis for decision
 making superior to guessing if it represents all that is
 known.

 A more complex example of this type is provided

 by analysis in situations where risk aversion is pru-
 dent. Here, an exploration that develops an assort-
 ment of plausible worst cases can be very useful for

 designing hedging strategies. This is true even if the
 models are not validated and their sensitivities are

 unknown. Indeed, validation and sensitivity analysis
 are concepts that are relevant primarily in the context

 of consolidative modeling. They are nonsequiturs in
 the context of exploratory modeling where issues of
 quality for exploratory modeling must be centered on
 ensuring the validity of the analytic strategy. Model-
 specific quality control issues are limited to verifica-
 tion that the model is plausible and that the software
 implements the model intended.

 Other examples of exploratory research strategies
 include the search for special cases where small invest-
 ments could (plausibly) produce large dividends, or
 extremal cases where the uncertainties are all one-
 sided, and a fortiori arguments can be used. In all
 these cases, individual model runs are not being
 treated as providing predictions or explicit answers to
 policy makers' questions. Instead, new information is
 being generated that can be helpful in making an
 informed policy decision. This new information was
 implicit in the prior knowledge that defined what was
 plausible. The role of modeling was to transform this
 implicit information into a more useful form.

 Thus, the skeptic's question is actually a version of
 the more general one: "Of what use is partial infor-
 mation?" For some questions, partial information
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 may be useless, but for many problems partial infor-
 mation can provide partial answers. For most policy
 problems, some decision must be made (at least the
 decision to do nothing), regardless of the level of

 uncertainty. Policy analysis requires understanding
 the implications of what is known, which for systems
 with insignificant nonlinearities may not be obvious.
 When dealing with complex systems, both what is
 known and what is uncertain may be best represented
 by computer models. Thus, computers can have a role
 in revealing the implications of what is known or
 believed and the possible consequences of what is
 unknown or uncertain.

 Even quite simple models are capable of exhibiting
 behaviors that surprise their creators. Consequently,
 building and exercising models have the potential of
 revealing unanticipated implications of our knowledge
 and assumptions. Even when a model is not validated,
 it can serve as an inference engine, showing us where
 innocuous-appearing assumptions lead to predicted
 behaviors different from initial expectations. By
 throwing light on treacherous assumptions or reveal-
 ing unrealized implications of existing information,
 computer modeling can perform an important service.

 When used for exploratory modeling, the computer
 functions as a prosthesis for the intellect, supporting
 the discovery of implications of a priori knowledge,
 novel explanations of known facts, or unrealized prop-
 erties of conjectures. This is a very different use for
 models than that of consolidating knowledge into a
 single package that can then be used as a surrogate for
 the target system. This difference also has significant
 implications for the methodology and the technology
 of model building and use.

 Uncertainty and Exploratory Modeling

 Uncertainty, or lack of knowledge, implies that there
 are many models that might plausibly represent the
 system of interest. Conversely, what is known con-
 strains the set of models that can be considered plau-
 sible. To better understand the interaction between
 what is known and what is not, it is useful to consider
 the set or ensemble of all models consistent with what
 is known. This ensemble may often be of infinite size,
 and thus can never be constructed explicitly. None-
 theless, when thinking about research strategy, the
 concept can be helpful. And, within a fixed modeling
 framework, for particular purposes, the ensemble of
 plausible models may be represented and manipulated
 usefully.

 When uncertainties are small, the entire ensemble
 may be adequately represented and reasoned about by
 means of a single example, as the differences among

 the properties of the plausible models will be similarly

 small. (The use of a single model to represent all
 plausible models is the consolidative modeling para-

 digm.) For other systems and purposes, however, the
 properties of members of the ensemble of plausible

 models may be sufficiently diverse that a large sample

 from the ensemble must be examined. It is the process
 of examining this larger sample that I call exploratory

 modeling. An exploratory analysis can involve a

 search for key examples, or may infer general prop-
 erties of the entire ensemble of plausible models from

 the sample examined.

 A concrete example may help to clarify this concept.

 The ensemble of plausible models is particularly easy

 to understand for the case of parameterized models.

 If a computer model contains N real-valued parame-

 ters, each with a plausible range, there is an implied
 virtual ensemble of models, one for each combination

 of parameter choices. This ensemble corresponds to a

 rectangular solid in an N-dimensional parameter

 space. (Constraints on the combinations of parameter
 values can produce more complex shapes.) Any point

 in this N-dimensional space corresponds to a particu-
 lar model. Those within the boundary or envelope

 of plausible ranges are members of the ensemble of
 plausible models.

 An exploratory analysis involves running models
 drawn from this ensemble. The process of selecting
 which model, that is, which combination of parame-

 ters, to run depends on the question being asked. For
 example, to determine the statistics of a model output
 across the ensemble, distributions for each parameter,

 such as uniform or Gaussian, can be asserted and
 samples from the ensemble can be chosen randomly

 to collect statistics. If, on the other hand, we wish to
 find the model that maximizes an output measure, a
 search strategy is required. Policy questions often
 motivate an interest in determining the regions of
 parameter space where certain properties are true.

 Thus, we might wish to discover the regions of the

 space for which an output measure is positive, or
 where the model trajectory is chaotic. This requires a

 different sort of adaptive sampling, one designed
 to determine the location of the boundary most
 efficiently.

 It is useful to contrast exploratory modeling to the

 concept of sensitivity analysis. For any numerical
 computer program, sensitivity analysis is the process
 by which uncertainty in inputs is related to uncertainty
 in outputs (Miser and Quade 1985, Ronen 1988, Suri
 1987, 1989). For special cases, model sensitivities can

 be determined analytically. More generally, sensitivi-
 ties are estimated by running excursions. Typically
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 this is done by varying parameters one at a time. For

 the N-parameter model discussed above, this corre-

 sponds to a run for each face of the rectangular solid,
 requiring 2N runs. These runs will be sufficient to

 estimate the model sensitivities only if the effects of

 parameters on the model are independent and mon-

 otonic. (The application of this approach to cases
 where these conditions are violated can be rationalized

 as an approximation if model variability is small over

 the range of parameter uncertainty.)

 In the general case, the maximum divergence from

 the best-estimate case can occur in the interior of the
 rectangular solid, and not on a face at all. In such a

 situation, determining the plausible range of outputs

 requires sampling throughout the volume of the plau-

 sible range of inputs. Such an approach is best

 described as exploratory analysis, as the sampling
 strategy should be determined by the needs of the

 analysis and the available computational resources.
 Whatever it is called, a fine-grained combinatorial

 sampling of the volume of the plausible envelope
 requires many more than 2N cases. Simply extending
 sensitivity analysis to test at the vertices of the solid
 requires 2N runs, which already is much greater than
 2N for large N.

 Large models like the ultimate combat model can
 have thousands of parameters and long run times,

 making even 2N excursions impractical. Conse-
 quently, for them even the simple version of sensitivity
 analysis is frequently not done. Such models are not

 designed with sensitivity analysis in mind; rather, they
 are designed as though the sensitivities were known

 a priori to be strongly bounded.
 Here we see the failure of the ultimate combat

 model from a new perspective. In the inability to
 perform sensitivity analysis adequately, the inappro-
 priateness of the consolidative paradigm is clearly

 revealed. If the uncertainties are small, and model

 behavior is well characterized, sensitivity analysis can
 be performed. However, when uncertainties are sig-
 nificant, running a best-estimate case and then doing

 an inadequate sensitivity analysis is a recipe for self-
 deception. Instead, a different strategy for sampling
 the ensemble of plausible models is required.

 Representing the Ensemble of Plausible Models

 Exploration need not be restricted to the values of
 numeric parameters, but can also be conducted across
 different sorts of nonparametric uncertainty. For
 example, members of the ensemble of plausible
 models might have differing numbers of variables,
 differences in data flow graphs, or computational algo-
 rithms. The modeler may know that X is determined

 from Yand Z, but be uncertain of the exact functional

 relationship. The modeler might know, for example,

 only that a function is continuously differentiable,

 bounded, and monotonic. The ensemble of such func-

 tions is not only infinite, it is of infinite dimension.
 Nonetheless, by representing such a function in terms

 of some basis, e.g., polynomials of arbitrary order, or

 Fourier series, the ensemble of possible functions can

 readily be searched across, or sampled from.

 While the general case of representing and searching

 across nonparametric uncertainty presents fundamen-

 tal research challenges, various special cases can be

 tractable. Often, plausible options can be enumerated,
 i.e., alternative submodels, equations, or rules. The

 ensemble to be searched can then be represented as

 the Cartesian product of the various enumerated
 ranges. Nonparametric uncertainties can be structured

 as graphs, trees, or lattices, for example, as sequences
 of possible decisions in a game-structured scenario.

 In general, nonparametric uncertainty can be rep-

 resented if a basis exists that is adequate to express the

 full range of possibilities, and if available knowledge
 can be expressed as constraints among admissible

 combinations of the basis elements. Where alternative

 bases exist, choosing among them can have significant
 consequences for the resulting exploratory analysis.
 For example, the choice between expressing an

 unknown function as an arbitrary polynomial or a
 Fourier series can have real consequences for both the

 ease with which constraints on that function can be

 expressed, and the properties of a search through
 function space structured by that basis. The choice of

 basis imposes a topology on the ensemble of models,
 affecting which models are viewed as similar to one
 another. This topology provides the foundation for
 any search or sampling strategy beyond random
 selection.

 Whether the ensemble of plausible models can be

 represented explicitly or not, the problem of analysis

 using exploratory modeling can be conceptualized as

 the problem of how to select the limited number of
 experiments that can be run practically to best inform
 the question of interest. This selection process can be
 thought of as sampling if the goal is to infer properties
 of the ensemble, and hence, of the actual system, or
 as search if the goal is to find models with special
 properties. Typically, the distinction between search

 and sampling will quickly become blurred as insights
 gained in the early stages of analysis affect the selection
 of later experiments.

 In general, a mathematically rigorous strategy for
 sampling will not be available. Instead, a sampling
 strategy may involve using human judgment to
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 prioritize the investigation of the uncertainties

 involved. Consequently, the result of an exploratory

 analysis will typically not be a mathematically rigor-
 ous answer, but rather an imperfect image of the

 complete ensemble that improves gradually as more

 cases are run. Given a fixed analytic budget (in dollars,

 people, or time), the analysis must provide the most
 useful results possible based on what is known about

 the problem at-hand.

 Types of Exploratory Modeling

 There are three general types of applications where

 exploratory modeling can be used; they can be labeled

 data-driven, question-driven, and model-driven.
 Data-driven exploration starts with a data set, and

 attempts to derive insight from it by searching over

 an ensemble of models to find those that are consistent

 with the available data. Question-driven exploration

 searches over an ensemble of models believed to be
 plausible to answer a question of interest. Model-

 driven exploration involves neither a fixed data set
 nor a particular question or policy choice, but rather
 is a theoretical investigation into the properties of a

 class of models. For each of these types, it is possible
 to describe the exploratory modeling process in greater

 detail.

 Data-Driven Exploratory Modeling. Data-driven
 exploration is used to reveal implications of a data set

 by searching through an ensemble of models for
 instances that are consistent with the data. While this

 process may not produce a "correct" model, structure
 in the data can be discovered by noting regularities in
 the modeling results.

 For example, data modeling for econometrics is

 typically done by guessing a regression equation based
 on a priori theoretical considerations, fitting it to the

 data, and, if satisfactory results are not obtained,
 modifying the equation iteratively until an equation
 that explains a significant portion of observed varia-
 bility is discovered. This process, sometimes referred
 to as specification search (Leamer 1978), has produced
 models of value for both forecasting and explanation,

 but also has pitfalls for the unwary. Standard statistical
 tests for goodness-of-fit do not take the (human-
 implemented) search process into account. Con-

 sequently, naive application of these tests may not
 protect against overfitting and other invalid results.
 (This danger is especially pronounced for computer-
 assisted and computationally intensive searches.) Con-
 sequently, conventional wisdom in econometrics and
 statistical modeling approves of data mining only

 when the ensemble of models is strongly constrained

 by a priori knowledge.

 Examples of incautious exploratory data modeling
 have caused the general notion of search across models
 and some specific algorithms, e.g., stepwise regression,
 to fall into disfavor with much of the statistical com-
 munity. However, the means exist to avoid these

 problems. For example, tests of statistical significance

 can be recalibrated to compensate for the search across

 the ensemble of models by means of the bootstrap or
 permutation methods (Efron 1982, Efron and Gong
 1983).

 The concept of search over an ensemble of models

 looking for good fits to the data applies equally well
 to other model formalisms. For example, there has
 been recent enthusiasm for modeling data by so-called
 "neural networks" or "connectionist" models. This

 approach is mathematically analogous to regression,
 with the network architectures defining nonlinear

 regression models (Geman, Bienenstock, and Doursat
 1992, MacKay 1992). Data modeling with neural

 networks typically requires experimenting with a wide
 variety of network architectures and data representa-

 tions. This human-mediated search process is seldom
 documented; rather, the final successful model is pre-
 sented without the context of less successful variants.

 (Unfortunately, the use of statistically rigorous mea-
 sures for goodness-of-fit are the exception in the
 literature of this field.)

 Quite often, causal simulation models are calibrated
 by adjusting parameters so that model performance
 matches the available data. While this is also usually

 human mediated, and uses less than formal measures-
 of-fit, this process also can be best understood as a
 search through an ensemble of similar models for one
 with desirable properties.

 In all these examples, search is most commonly

 done via human-implemented iteration that con-
 cludes with a single successful model. Increasing avail-
 ability of computer power suggests opportunities for
 both machine assistance in the search process and
 producing more than one model as an output. When

 the data being modeled have associated uncertainties,
 a single model of the data can be misleading. For
 nonlinear models the goodness-of-fit may not be uni-
 modal across the ensemble of models, making multi-
 ple outcomes of specification search useful. For at

 least some purposes, it may be more enlightening to
 specify an acceptable threshold for a figure of merit
 and produce a sampling of models that fit the data to
 within that threshold. Such an approach can provide
 the advantages of conventional data modeling without
 risking misplaced overconfidence in the results.
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 Question-Driven Exploratory Modeling. This type of

 analysis searches among an ensemble of plausible
 models to answer a question of interest or illuminate

 policy choices. Where uncertainties are significant, an

 exhaustive search across all plausible models typically
 will not be possible. The sampling strategy must there-

 fore be designed to produce the maximum help in

 answering the question of interest from a limited

 number of computational experiments. Examples of

 possible strategies include: sampling randomly or uni-

 formly across the ensemble (including nonparametric
 sources of uncertainty) to determine the range of

 plausible outcomes, searching for the worst cases to

 support the construction of risk-averse hedging strat-

 egies, listing plausible scenarios for which existing

 policies fail cataclysmically to generate needed contin-
 gencies and triggers, discovering bounding cases to

 support a fortiori arguments, and discovering bound-

 ary cases that reveal the conditions that would favor
 alternative options.

 Consider a simplistic example in which we wish to

 answer the question: If we do X, do we win or lose?
 While the models involved may produce complex and

 voluminous outputs, for the purposes of this question,

 they may be boiled down to a single bit. To know the
 details of a particular scenario to many decimal places

 is not particularly helpful in answering the question.

 Instead, we need to know how the ensemble of plau-

 sible models divides up into those where we win (color
 them white) and those where we lose (colored black).

 Of course, if the ensemble is all one color (white or
 black), then the analysis (and the answer to the ques-

 tion) is particularly easy. Even when both outcomes

 are plausible, an analysis of the assumptions under
 which each may occur may be useful for making the

 actual decision to implement option X or not. Patterns

 across the ensemble can reveal unrecognized connec-
 tions between the implications of different kinds of

 uncertainty that can suggest fruitful alternative strat-
 egies, prove helpful in prioritizing research to further
 constrain the range of plausibility, or support a more
 educated hunch on the part of the decision maker
 who must make this decision.

 Our ability to discern patterns in outcome across
 the ensemble of plausible models depends on being
 able to define a topology on the ensemble such that

 similar models have similar outcomes. (The reader
 may find it helpful here to think again of the simple

 case of a parameterized model.) If for a given topology

 the white and black regions are thoroughly intermixed,
 e.g., form a fractal Cantor dust, (see Schroeder 1991),

 then little of use can be concluded from an exploratory

 analysis beyond estimating the relative probabilities

 of outcome given probability distributions for the

 uncertainties. At the other extreme, the boundary

 between the white and black regions could be very

 simple; for example, the boundary could be a hyper-

 plane in the space of models. In such a case, the shape

 and position of the boundary could be estimated from

 a relatively small number of samples, as the size of

 the sample would scale with the area of the boundary

 rather than with the volume of the space. As the

 boundary between the regions becomes more com-
 plex, the process required to discover the boundary

 becomes similarly complicated. Similarly, more com-

 plex questions, such as determining the rank ordering

 among a list of alternative proposed actions, involve
 discerning multiple regions in model space.

 Model-Driven Exploratory Modeling. This type of

 exploration investigates the properties of an ensemble
 of models without reference to a data set or policy

 question. Model-driven exploration can thus be
 viewed as an example of experimental mathematics.

 It will be useful for policy analysis whenever a new

 class of models is proposed to represent a system of
 interest. Properties of this class must be determined

 to assess how or whether such models might be useful.

 An example of a model-driven problem that fre-

 quently occurs involves the relationship between dif-

 ferent models that putatively represent the same
 phenomenon, in particular, two models at different

 resolutions. In the general nonlinear case, two such

 models will be effectively equivalent only for a limited

 range of state, only approximately, and only for a

 limited time. Determining the conditions for an aggre-

 gate model to be effectively equivalent to a higher-
 resolution model in general requires computational

 experiments. Another prominent instance of model-
 driven exploration occurred in recent developments
 in nonlinear dynamics, where chaotic trajectories were

 observed computationally before they were either

 explained analytically or demonstrated in actual sys-
 tems. Determining whether a class of models is capa-
 ble of exhibiting chaotic behavior will, in general,
 require exploratory analysis through computational

 experiments.

 Question-Driven Exploration and the Size of Simula-
 tion Models. We have seen how the inappropriate use
 of consolidative modeling methodology can result in
 very large simulation models, leading to a host of
 problems. The growth in model size is driven both by
 the desire to build multipurpose models and by the
 substitution of high-resolution realism for experimen-
 tal validation. Question-driven exploratory modeling
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 avoids both of these routes to oversize models and

 thus can provide a route to solving many of the

 problems policy modeling has been prone to. This is

 because exploratory modeling allows for much greater
 flexibility in choosing appropriate levels of resolution.

 The model that is built to answer a particular ques-

 tion should generally be the smallest (lowest resolu-

 tion) that satisfies that purpose. Keeping the model as
 limited as possible minimizes problems with under-

 standability and sensitivity analysis. As different ques-

 tions are asked during the course of an analysis,
 models of different resolutions may be required.
 Addressing broad tradeoffs may require aggregated
 models of wide scope, whereas models for specific
 questions may require more focus and detail.

 It must be recognized, however, that model resolu-

 tion is a modeling artifact against which study conclu-

 sions are usually desired to be invariant. Model
 resolution is thus often a form of nonparametric
 uncertainty over which exploration may be desirable.
 When resolution can be varied simply by changing

 the mesh size of an array representation, such a
 requirement may not be particularly arduous. When

 increasing resolution requires breaking concepts down
 into subconcepts, however, labor-intensive modeling

 and programming may be required. Furthermore,
 higher-resolution models typically will have a greater

 number of uncertain parameters, increasing the

 dimensionality of the space to be explored. For both
 of these reasons, exploratory research strategies may
 need to confront issues regarding the scale of models

 and the range of exploration across resolutions.
 Search strategies generally cannot visit every possi-

 ble alternative, and must instead use heuristics to

 guide the search. Exploratory-modeling strategies like-
 wise cannot guarantee absolute answers, but must

 endeavor to provide the most information for the
 resources available. Often human judgment must be

 used to focus attention on the aspects of modeling
 that appear most critical for the question at-hand. One
 possible approach to doing this is selective resolution
 where initial modeling is done with relatively aggre-

 gate models, and the results of this preliminary

 analysis are used to guide the selective use of
 higher-resolution models, with detail added only for

 the attributes that appear to have a large impact on
 the question of interest. In this way, the results of
 preliminary analysis with aggregated models can guide
 the allocation of resources in more detailed modeling.
 At the same time, by adding resolution only where

 necessary in the context of a specific question, the use

 of monolithic high-resolution models, with all their
 attendant difficulties, may be avoided.

 TECHNICAL OPTIONS FOR SUPPORTING
 EXPLORATORY MODELING

 We have seen how the decision to build the ultimate
 combat model led to many problems and produced
 little real contribution to policy analysis. What should
 its designers have done instead? It is apparent that the
 variety of needs posed by wide-ranging studies of
 systems with significant uncertainties cannot be sup-
 ported by a single high-resolution model. Models built
 prior to identifying the questions of interest will sel-
 dom be ideal (or even adequate) to address them.
 Thus, the use of a large multipurpose model carries
 with it the enormous risk that the model will constrain
 the set of questions that are asked, creating a sym-
 metric bias to the analysis. This is akin to looking for
 a lost quarter only where the light is good.

 In the context of exploratory modeling, the models

 for any given study typically will be crafted for that
 study. Consequently, building a fixed model or models
 is not the way to facilitate a wide range of policy

 studies. For example, the desired level(s) of resolution
 in a model should be determined by the research

 strategy for dealing with uncertainty, which will vary
 between studies. And multiple alternative models

 or model variants may need to be examined to

 avoid being confused by artifacts of particular
 modeling choices.

 In contrast to consolidative modeling, where a sin-
 gle model can be useful, exploratory modeling can
 only produce useful results through a constellation of
 alternative model outcomes. The product of consoli-
 dative modeling is an artifact, a single model pre-
 sumed "correct" for the purposes of its use.
 Exploratory modeling is not a product but rather a
 process. How can this process be better supported?
 The goal of the ultimate combat model project was to
 build software prior to beginning analytic studies that
 would make those studies more effective. This goal
 can be achieved, but the software cannot be some
 putative ultimate model. Instead, support can best be
 provided through tools and broadly useful model
 pieces or constructs that can facilitate the exploratory
 modeling process. As existing technology to support
 modeling has evolved from the consolidative model-
 ing tradition, it is designed to support the construction
 and use of single models. Consequently, the different
 requirements of exploratory modeling present oppor-
 tunities for different tools to support the construction
 and use of multiple models.

 The purpose of an exploratory modeling environ-
 ment would be to allow users to navigate efficiently
 through the space of plausible models and model
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 outcomes to construct lines of reasoning and to learn
 about the implications of both knowledge and hypoth-
 esis. There are two general needs that such an envi-

 ronment might address: assistance in managing the

 complexity of the exploratory modeling process, and
 support for more powerful and facile generation of
 new models. These two general categories can be

 subdivided further to produce the following list of
 needs:

 * means for the analyst to understand and manage
 the complexity of the numerous models, cases, and
 relationships among them;

 * means for visualizing the results of exploratory
 modeling;

 * support for iterative and adaptive modeling;
 * representation of the ensemble of models;
 * automated search and sampling of ensembles of
 models.

 Support for Managing the Complexity of an
 Evolving Analysis

 An exploratory analysis can involve large numbers of

 computational experiments. The cognitive complexity
 of managing such an analysis can be a significant
 burden for the researcher. The ability of the analyst
 to keep track of the myriad details of model charac-

 teristics, interrelationships, cases, histories, implica-
 tions, status, and outcomes could be enhanced greatly
 by an appropriate software environment.

 To support an analytic process based on performing
 computational experiments, an exploratory modeling
 environment could provide an automated laboratory
 notebook with a page for each computational experi-

 ment. In analogy to a physical laboratory notebook
 used for physical experiments, each page would record
 all the information needed to reproduce the experi-
 ment, records of the results of the experiment, and
 annotations explaining why the experiment was per-
 formed, what was learned from it, and how these
 results relate to the global research strategy. These
 pages would form the conceptual center for a data
 facility that would serve as an electronic record of the
 evolving chain of reasoning that constitutes the analy-
 sis. Such a facility would be more than a data base, as
 it would contain not only data but also computer
 models, model runs, model outputs, human notations,
 and all needed relationships among these entities.
 Such a facility would in fact be a hypermedium
 (Barrett 1988, Wurman 1989) for modeling.

 Such a history would be a record of all modeling
 experiments, including the model variants, and data
 going into any modeling experiment as well as its

 outcome. The ultimate environment would have attri-
 butes of brainstorming and outlining tools, data base

 facilities, version control systems, and general purpose
 modeling environments. Such an environment would

 assist the user in keeping track of an evolving analysis
 involving the construction of multiple models and

 model variants, case runs, changing assumptions used,

 and tentative conclusions drawn.

 In addition to documentation of individual experi-

 ments, such a notebook should provide the means of

 documenting the research strategy that dictates the

 selection of the experiments, and the relationships
 among the results that support study conclusions.

 Because of these relationships, individual modeling
 experiments can gain contextual significance or mean-
 ing that they would not have in isolation. In this way,
 the use of multiple models in the analysis of a problem

 can provide a novel sort of software modularity com-
 pared with the use of single monolithic programs.

 A monolithic model must represent all of the com-

 plexities of the system as procedural (algorithmic)

 computer programs. By using multiple models, some

 portion of this complexity can be exported outside the
 models, where it can be represented as declarative
 information inherent in the relationships among

 models, cases, and data bases. This is beneficial in that
 it may allow for smaller models that may be easier to

 understand and because declarative information
 implies opportunities to devise more powerful tools

 than are feasible to manipulate procedural code.

 Visualizing the Results of Exploratory Modeling

 Individual model runs can produce voluminous data;
 multiple runs can produce astronomical quantities.
 Developing intuition based on the results of modeling
 requires adequate means for viewing these results. The

 deluge of data that can be generated makes it impos-
 sible for users to quantitatively examine more than a
 fraction of it. If insight is to be generated from these

 outputs, means must be available to easily view the

 data for various purposes. Means for viewing the
 results of exploratory modeling would be useful both

 for presenting final results of the analysis to the con-
 sumer and for providing a powerful means for the
 analyst to improve his or her intuition.

 With the advent of raster graphics, entire fields of
 variables can be converted to color images. Informa-

 tion conveyed in this way undergoes a qualitative
 change because it utilizes the tremendous pattern-
 recognition capabilities of the human eye-brain sys-
 tem. An environment for exploratory modeling

 should include capabilities for visualizing data har-
 vested across multiple cases. Some of these graphical
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 tools might resemble the displays available in statisti-

 cal-data modeling packages. Thus, in the context of a

 question-driven exploratory analysis where models

 had been sampled across N dimensions of uncertainty,

 one might display a two-dimensional slice or projec-
 tion of the N-dimensional point cloud of model out-
 comes. This view of the results could be manipulated
 by such devices as sliders or handles that would allow

 the user to explore the results graphically.

 Support for Iterative Modeling

 Exploratory modeling is often accomplished by
 human-mediated iterative testing and revision of a

 current model, resulting in an evolving genealogy of
 experiments. This process can be supported in a num-
 ber of ways. One approach is based on the use of high-
 level languages that support WYSIWYG (What You

 See Is What You Get) modeling. The goal of
 WYSIWYG modeling is made possible by the flexi-

 bility of exploratory modeling to obey constraints on
 the size of models, the availability of high-level pro-
 gramming languages designed for understandability

 and modifiability (see, for example, Allen and Wilson
 1988, Shapiro et al. 1985, 1988), and the use of

 interactive computer software environments, which

 allow easy inspection and manipulation of model

 source code, parameters, and outputs. These ends can
 also be sought through open model architectures that

 promote transparency and ease of revision, modeling

 tools and languages that support full object orienta-
 tion, end-user readability of model code, highly
 interactive direct manipulation interfaces, strong con-

 figuration management, and rapid execution.
 New models need not always be built from scratch.

 It may be possible to construct modeling environ-

 ments for specific policy areas that incorporate base-
 line model components to allow model construction
 through combining submodels from libraries of model
 components, varying parameters, and model revision
 on the margin. Instead of building megamodels to
 support a variety of studies, modeling environments
 could be constructed that incorporate baseline models,
 and other tools to aid in model construction, so that
 the process of building numerous model variants is
 made tractable.

 Constructing new models by combining model
 components can be facilitated through standards for
 model interfaces. Interface standards would also facil-
 itate construction of hierarchic ensembles of models
 and standard tools for viewing their behavior. The

 definition of such interfaces is a challenging problem
 that can be eased somewhat by having model com-

 ponents interact through a common data facility with
 an associated standard data dictionary.

 Representing the Ensemble of Plausible Models

 While better support for the iterative modeling process

 would be useful, exploratory modeling will necessarily

 be constrained if programming is required for each

 model variant generated. To eliminate this constraint,
 tools are needed that will allow new models to be

 generated with less labor and greater transparency

 than modifying the program code directly. To con-

 struct such tools, it is necessary to represent explicitly
 the space of models from which variants are to be
 drawn.

 Representing a space of computational experiments
 involves both defining a unique descriptor for each

 experiment, and providing a transformation from
 descriptors to model instances. For example, a list of
 parameter values together with a parameterized model

 defines a model instance. Relative to the space of

 modeling experiments generated by all possible
 parameter combinations, a particular list of parame-
 ters can be considered to be a descriptor for a corre-
 sponding experiment, and the parameterized model
 an implementation of the transformation from
 descriptors to executable experiments. The parame-

 terized model is thus best thought of as a model
 schema in that it is associated with a large number of
 potential model instances.

 More complex ensembles of models involving
 unbound functions, alternative submodels, and other
 sorts of nonparametric uncertainty, can similarly be

 represented by a combination of descriptors that

 define syntactically the assumptions that vary across
 the ensemble together with a model schema that

 encodes the knowledge that does not. In this way, it
 may be possible to program at the schema level with

 the program defining a space of models, and all par-
 ticular models being generated from the schema as a
 result of specifying a particular model descriptor. With

 appropriate tools for the generation of model

 instances, this would both ease the process of
 model revision, and free modeling methodology from
 its present bias toward best-estimate models.

 Current methodology is built upon a powerful met-
 aphor, that a computer program is a model. Despite
 this metaphor's power, it can be misleading. The
 creative process in the minds of policy analysts typi-
 cally results in conceptual models that leave many
 details unspecified. For example, the analyst might
 hypothesize that X depends upon Y and Z, without
 identifying the functional form of the dependency, let
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 alone the exact values of all parameters. Such a con-

 ceptual model is best represented by a model schema

 that corresponds to a multitude of particular models,

 and not by any representative single model.

 Current technology requires the modeler to focus

 on one particular model out of the range of possible
 instances in order to begin implementing his or her

 ideas. Typically, neither the program implementer,

 author of the conceptual model, nor the customer for

 the final policy recommendation will have any idea

 how much bias in the answer is introduced by this

 early design decision. Narrowing the focus to a single

 model should preferably be postponed until the latest

 possible time, ideally until the specification of a par-

 ticular computational experiment.

 Support for the Search Across Models

 Once the ensemble of interesting computational
 experiments has been represented, a variety of tools

 for generating individual experiments become feasi-

 ble. Iterative development could be supported by

 direct-manipulation user interfaces that provide the
 user with the ability to select particular experiments

 without manipulating source code directly. More spec-

 ulatively, once the ensemble of models is represented
 in the computer, full automation of the generation of

 instances becomes an interesting option, as this would

 allow for computationally intensive research strate-
 gies. With such a mechanism, composite computa-

 tional experiments become possible, where the analyst

 would specify an ensemble and a sampling strategy,

 generate thousands to billions of individual experi-
 ments, and then examine the results. Sampling strat-
 egies could include random Monte Carlo approaches,

 automatic sensitivity analysis (for a related idea, see
 Rothenberg, Shapiro and Hefley 1990), or adaptive
 search to identify special cases (i.e., boundaries,
 thresholds, or extremal results). Such composite exper-
 iments have effectively infinite inherent parallelism,
 large grain size, and small interprocess communica-
 tion requirements, making them ideal for exploiting
 massively parallel supercomputers, or networks of
 workstations.

 CONCLUDING REMARKS

 The computer's capabilities for rapidly performing

 many more arithmetic or logical operations than the
 human mind gives it a prominent role in addressing

 problems of great complexity. We are still early in the

 process of understanding how best to design computer

 systems so that human capabilities are enhanced, not
 eclipsed, and the strengths of the computer utilized

 while its liabilities are minimized. The inappropriate

 use of computer models can clearly result in invalid

 conclusions. Questionable research strategies that

 involve the use of computer models for policy analysis

 are all too frequent, and more critical scrutiny of

 models needs to be encouraged. However, in this
 paper I have tried to demonstrate that in the context

 of a properly conceived research strategy, computa-
 tional experiments can be a very useful tool.

 In numerous scientific fields, research methodol-

 ogies based on computational experiments have often

 been controversial when first introduced. In time, the
 increasing availability of computational power typi-

 cally results in growing experimentation with explor-

 atory modeling approaches and the credibility of this
 research has grown as increasing numbers of workers
 in these various fields become computer adept (Strauss

 1974, Campbell et al. 1985, Rose and Dobson 1985,

 Anderson 1988, Lipman, Marr and Welsh 1989). We

 can anticipate that the use of exploratory modeling to
 break trail for more traditional science is likely to
 become increasingly important.

 Due to the complexity of the systems of interest and

 the abundance of problems for which no model can
 be validated experimentally, no disciplines seem better
 disposed to benefit from the exploratory approach to
 computation than do operations research and the

 policy sciences. Increasing sophistication among pol-
 icy researchers with this approach could not only

 contribute significantly to improved analysis of com-
 plex and uncertain problems, it could also provide a
 modicum of protection against being fooled by our
 own models.
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